Answer:
a) t₀ = 0.704 10⁻¹² s, b) #cycle = 2.05 10¹⁶ cycles ,
c) #_cycles = 7,418 10³² cycles, d) Δt = 4.6 10⁴ s
Explanation:
For this exercise we must use the relationship between the period and the frequency
f = 1 / T
T = 1 / f
let's apply this equation to our case
a) The time of a cycle is
t = 1 / 1.420405 10¹²
t₀ = 0.704 10⁻¹² s
b) number of cycles in 4 h
t = 4 h (3600 s / 1h) = 14400 s
Let's use a direct rule of proportions (rule of three). If there is 1 cycle in t₀, how much cycle is there
#_cycles = t (1 / t₀)
#_cycle = 14400 s (1 cycle / 0.704 10⁻¹² s)
#_cycle = 2.0454 10¹⁶ cycles
#cycle = 2.05 10¹⁶ cycles
c) cycles since the age of the Earth
t = 4.6 10⁹ years (365 days / year) (24 h / 1 day) (3600 s / 1 h)
t = 5.2224 10²⁰ s
#_cycles = t (1 / to)
# _cycles = 5.2224 10²⁰ (1 / 0.704 10⁻¹²)
#_cycles = 7,418 10³² cycles
d) Let's use the direct proportion rule. If you have a lag of Δt₁ = 1s at t₁ = 1 10⁵ years, what is the lag (Δt) at t = 4.6 10⁹ years
Δt = t (Δt₁ / t₁)
Δt = 4.6 10⁹ years (1 s / 10⁵ years)
Δt = 4.6 10⁴ s