Answer:
Mason's has 4 cars more.
no, it is still not the same ratio.
Step-by-step explanation:
each lot has 60 vans.
the ratio of cars/vans at Mason's is 7:5.
this means for every group of 5 vans there are 7 cars.
how many groups of 5 vans are there ? 60/5 = 12
so, for each of the 12 groups of 5 vans there are 7 cars.
=> 12×7=84
another way to get there (and faster) :
you can also say that a ratio is actually a division.
7:5 is 7/5
so, 60 × 7/5 = 12 × 7 = 84
in any case, Mason's has therefore 60 vans and 84 cars.
Hyland also has 60 vans, but a ratio of cars to vans of 4:3.
let's do the fast route :
60 × 4/3 = 20 × 4 = 80
Hyland has therefore 60 vans and 80 cars.
so, Mason's has more cars (4 more than Hyland).
now Hyland adds 2 vans, having then 62 vans and still 80 cars.
so, the ratio cars to vans is now 80:62. or 80/62
=> 80/62 = 40/31 which cannot be further simplified, as 31 is a prime number.
40/31 is not equal to 7/5. so, it is still not the same ratio.