Respuesta :
Answer:
0.5 = 50% probability that a randomly chosen sample of glass will break at less than 509 MPa
Step-by-step explanation:
Normal Probability Distribution
Problems of normal distributions can be solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
Mean of 509 MPa with a standard deviation of 17 MPa.
This means that [tex]\mu = 509, \sigma = 17[/tex]
What is the probability that a randomly chosen sample of glass will break at less than 509 MPa?
This is the p-value of Z when X = 509. So
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{509 - 509}{17}[/tex]
[tex]Z = 0[/tex]
[tex]Z = 0[/tex] has a p-value of 0.5
0.5 = 50% probability that a randomly chosen sample of glass will break at less than 509 MPa