Respuesta :
Answer:
a) y = 0.98 t², t=1s y= 0.98 m,
b) he two blocks must move the same distance
c) v = 1.96 m / s, d) a = -1.96 m / s², e) x = 0.98 m
Explanation:
For this exercise we can use Newton's second law
Big Block
Y axis
N-W = 0
N = M g
X axis
T- fr = Ma
the friction force has the expression
fr = μ N
fr = μ Mg
small block
w- T = m a
we write the system of equations
T - fr = M a
mg - T = m a
we add and resolved
mg- μ Mg = (M + m) a
a = [tex]g \ \frac{m - \mu M}{m+M}[/tex]
a = [tex]9.8 \ \frac{10- 0.2 \ 20}{ 10 \ +\ 20}[/tex]
a = 9.8 (6/30)
a = 1.96 m / s²
a) now we can use the kinematic relations
y = v₀ t + ½ a t²
the blocks come out of rest so their initial velocity is zero
y = ½ a t²
y = ½ 1.96 t²
y = 0.98 t²
for t = 1s y = 0.98 m
t = 2s y = 1.96 m
b) Time is a scale that is the same for the entire system, the question should be oriented to how far the big block will move.
As the curda is in tension the two blocks must move the same distance
c) the velocity of the block M
v = vo + a t
v = 0 + 1.96 t
for t = 1 s v = 1.96 m / s
t = 2 s v = 3.92 m / s
d) the deceleration if the chain is cut
when removing the chain the tension becomes zero
-fr = M a
- μ M g = M a
a = - μ g
a = - 0.2 9.8
a = -1.96 m / s²
e) the distance to stop the block is
v² = vo² - 2 a x
0 = vo² - 2a x
x = vo² / 2a
x = 1.96² / 2 1.96
x = 0.98 m
the time to travel this distance is
v = vo - a t
t = vo / a
t = 1.96 /1.96
t = 1 s