an alternating voltage of 100V, 50HZ Is Applied across an impedance of (20-j30) calculate the resistance, the capacitance, current, the phase angle between current and voltage

Respuesta :

The resistance R = 20 Ω

The capacitance C = 106.1 μF

The current, I is 2.773 A at 56.31°.

The phase angle of the between the current and the voltage is 56.31° leading.

Since the impedance Z = 20 - j30 Ω, the resistance, R is the real part of the impedance. So R = ReZ = 20 Ω

So, the resistance R = 20 Ω

To find the capacitance, we need first to find the reactance of the capacitor X. Since the impedance Z = 20 - j30, the reactance of the capacitor X. is the imaginary part of the impedance. So X = ImZ = 30 Ω.

Now the reactance of the capacitor X = 1/ωC where ω = angular frequency of the circuit = 2πf where f = frequency of the circuit = 50 Hz and C = capacitance  

So, C = 1/ωX = 1/2πfX

Substituting the values of the variables into the equation, we have

C = 1/2πfX

C = 1/(2π × 50 Hz × 30 Ω)

C = 1/3000π

C = 1/9424.778

C = 1.061 × 10⁻⁴ F

C = 106.1 × 10⁻⁶ F

C = 106.1 μF

So, the capacitance is 106.1 μF

The current I = V/Z where V = voltage = 100 V at 0° and Z = impedance.

The magnitude of Z = √(20² + (-30)²)

= √(400 + 900)

= √1300

= 36.06 Ω

and its angle Φ = tan⁻¹(ImZ/ReZ)

= tan⁻¹(-30/20)

= tan⁻¹(-1.5) = -56.31°

So, V = 100 ∠ 0° and Z = 36.06 ∠ -56.31°

So, the current, I = V/Z =  (100 ∠ 0°)/36.06 ∠ -56.31°

= 100/36.06 ∠(0° - (-56.31° ))

= 2.773 ∠ 56.31° A

So, the current is 2.773 A at 56.31°.

Since the current is 2.773 A at 56.31°, the phase angle of the between the current and the voltage is 56.31° leading.

So, the phase angle of the between the current and the voltage is 56.31° leading.

Learn more about alternating voltage here:

https://brainly.com/question/20345565