[tex] \red{ \rm \frac{d}{dx} \left \{ \int \limits_{0}^{ \large \int \limits _{0}^{ {sin}^{ - 1} } \small{sect \: dt} } \frac{1}{1 + {e}^{t} } \: dt\right \}} \\ [/tex]​

Respuesta :

I think you meant

[tex]\displaystyle \frac{d}{dx} \int_0^{f(x)} \frac{dt}{1+e^t}[/tex]

where

[tex]f(x) = \displaystyle \int_0^{\sin^{-1}(x)} \sec(t) \, dt[/tex]

By the fundamental theorem of calculus, we have

[tex]\displaystyle \frac{d}{dx} \int_0^{f(x)} \frac{dt}{1+e^t} = \frac{\frac{df}{dx}}{1+e^{f(x)}}[/tex]

as well as

[tex]\dfrac{df}{dx} = \sec\left(\sin^{-1}(x)\right) \times \dfrac{d\sin^{-1}(x)}{dx}[/tex]

The derivative of arcsine is

[tex]\dfrac{d\sin^{-1}(x)}{dx} = \dfrac1{\sqrt{1-x^2}}[/tex]

and so the overall derivative we want is

[tex]\displaystyle \frac{d}{dx} \int_0^{f(x)} \frac{dt}{1+e^t} = \frac{\sec\left(\sin^{-1}(x)\right)}{\left(1+e^{f(x)}\right)\sqrt{1-x^2}}[/tex]

We can further simplify [tex]e^{f(x)}[/tex], as

[tex]\displaystyle \int \sec(t) \, dt = \ln|\sec(t) + \tan(t)| + C[/tex]

[tex]\implies \displaystyle \int_0^{\sin^{-1}(x)} \sec(t) \, dt = \ln\left|\sec\left(\sin^{-1}(x)\right) + \tan\left(\sin^{-1}(x)\right)\right| = \ln\left|\frac{1+x}{\sqrt{1-x^2}}\right|[/tex]

[tex]\implies e^{f(x)} = \dfrac{1+x}{\sqrt{1-x^2}}[/tex]

Then the fully simplified derivative would be

[tex]\displaystyle \frac{d}{dx} \int_0^{f(x)} \frac{dt}{1+e^t} = \frac{\sec\left(\sin^{-1}(x)\right)}{\left(1+\dfrac{1+x}{\sqrt{1-x^2}}\right)\sqrt{1-x^2}} = \boxed{\frac{\sec\left(\sin^{-1}(x)\right)}{\sqrt{1-x^2}+1+x}}[/tex]