Respuesta :
Answer:
28.42 feet
Step-by-step explanation:
Given
- Height of tree = 18 feet
- Length of shadow = 22 feet
To Find
- Distance b/w top of tree and end of shadow
Solving
- This resembles a right triangle
- ⇒ We can use Pythagorean Theorem!
- ⇒ 18² + 22² = L²
- ⇒ L² = 324 + 484
- ⇒ L² = 808
- ⇒ L = 2√202
- ⇒ L = 2 x 14.21
- ⇒ L = 28.42 feet
Answer:
28.4 feet
Step-by-step explanation:
The question can be solved by using Pythagoras Theorem.
Given:-
Height of tree :- 18 feet (Perpendicular)
length of shadow :- 22 feet (Base)
To find:-
Distance of shadow from the end to the top of the tree
Solution:-
We know the Pythagoras theorem,
Which is , H² = P² + B²
So putting the given value , we get
H² = 18²+22²
H² = 324 + 484
H = √ 808 feet
H = 28.4 feet