A gardener builds a rectangular fence around a garden using at most 56 feet of fencing. The length of the fence is four feet longer than the widthWhich inequality represents the perimeter of the fence, and what is the largest measure possible for the length?

Respuesta :

We know that

• The gardener used at most 56 feet of fencing.

,

• The length of the fence is four feet longer than the width.

Remember that the perimeter of a rectangle is defined by

[tex]P=2(w+l)[/tex]

Now, let's use the given information to express as inequality.

[tex]2(w+l)\leq56[/tex]

However, we have to use another expression that relates the width and length.

[tex]l=w+4[/tex]

Since the length is 4 units longer than the width. We replace this last expression in the inequality.

[tex]\begin{gathered} 2(w+w+4)\leq56 \\ 2(2w+4)\leq56 \\ 2w+4\leq\frac{56}{2} \\ 2w+4\leq28 \\ 2w\leq28-4 \\ 2w\leq24 \\ w\leq\frac{24}{2} \\ w\leq12 \end{gathered}[/tex]

The largest width possible is 12 feet.

Now, we look for the length.

[tex]\begin{gathered} 2(12+l)\leq56 \\ 24+2l\leq56 \\ 2l\leq56-24 \\ 2l\leq32 \\ l\leq\frac{32}{2} \\ l\leq16 \end{gathered}[/tex]

Therefore, the largest measure possible for the length is 16 feet.