Carbon-14 is used for archeological carbon dating. Its half-life is 5730 years. How much of a 50-gram sample of Carbon-14 will be left in 1000 years?

Respuesta :

Given:

The half-life of carbon-14 is 5730 years.

The initial amount of carbon is I = 50 grams.

Explanation:

To find the final amount of carbon after 1000 years.

The fundamental decay equation is,

[tex]\begin{gathered} F=Ie^{-\lambda t} \\ \text{Where, }\lambda=\frac{\ln 2}{t_{\frac{1}{2}}} \end{gathered}[/tex]

Let us find the radioactive constant first.

[tex]\begin{gathered} \lambda=\frac{\ln 2}{5730} \\ \lambda=0.00012096809 \end{gathered}[/tex]

Then, the final amount of the corban-14 is,

[tex]\begin{gathered} F=50e^{-0.000121(1000)}^{} \\ =44.30g \end{gathered}[/tex]

Hence, the amount of a 50-gram sample of Carbon-14 will be left in 1000 years is 44.30 g.