Given that the player can or cannot hit the ball, then this situation can be modeled with the binomial distribution.
Binomial distribution formula
[tex]P=_nC_xp^x(1-p)^{n-x}^{}[/tex]where
• P: binomial probability
,• nCx: number of combinations
,• p: probability of success in a single trial
,• x: number of times for a specific outcome within n trials
,• n: number of trials
Substituting with n = 7, x = 4, and p = 0.33, we get:
[tex]\begin{gathered} P=_7C_4(0.33)^4(1-0.33)^{7-4} \\ P=35(0.33)^4(0.67)^3 \\ P\approx0.125 \end{gathered}[/tex]The probability is 0.125