Since he has 15 vessels and needs to choose 5, we can use a combination of 15 choose 5 to calculate the number of possible ways, since the order of the vessels inside the group of 5 is not important.
The formula to calculate a combination of n choose p is:
[tex]C(n,p)=\frac{n!}{p!(n-p)!}[/tex]Then, for n = 15 and p = 5, we have:
[tex]\begin{gathered} C(15,5)=\frac{15!}{5!(15-5)!}=\frac{15!}{5!10!}=\frac{15\cdot14\cdot13\cdot12\cdot11\cdot10!}{5\cdot4\cdot3\cdot2\cdot10!} \\ =\frac{15\cdot14\cdot13\cdot12\cdot11}{5\cdot4\cdot3\cdot2}=3003 \end{gathered}[/tex]So there are 3003 ways to choose the 5 vessels.