Given:
[tex]\begin{gathered} Principal=15,000 \\ rate(r)=4.9\%=0.049 \\ time(t)=10years \end{gathered}[/tex]To Determine: (a) How much interest will Ingrid accrue for 4.5 years non payment period
Solution
Calculate the amount accrued for 4.5years
The formula for finding amount for compound interest is
[tex]A=P(1+r)^{nt}[/tex]Substitute the given into the formula
[tex]\begin{gathered} A=15000(1+0.049)^{4.5} \\ A=15000(1.049)^{4.5} \\ A=18602.91 \end{gathered}[/tex]Step 2: Calculate the interest accrued for 4.5 years
[tex]\begin{gathered} I=A-P \\ I=18602.91-15000 \\ I=3602.91 \end{gathered}[/tex](a) Hence the interest Ingrid will accrued for 4.5 years non-payment period is $3,602.91
(b) The new principal when she begins making loan payments will be the amount accrued for 4.5years nonpayment period. This is as calculated above, which is
$18,602.91
(c) To Determine how much interest will she pay over the life of the loan
Note that the life of the loan is 10 years
[tex]So,t=10[/tex]Substitute the given into the formula for finding the amount as shown below
[tex]\begin{gathered} A=15000(1+0.049)^{10} \\ A=15000(1.049)^{10} \\ A=24201.71 \end{gathered}[/tex]Use the amount to calculate the interest of the life of the loan
[tex]\begin{gathered} I=A-P \\ I=24201.71-15000 \\ I=9201.71 \end{gathered}[/tex]Hence, the interest she would pay over the life of the loan is $9,201.71