Consider the top half of a sphere centered at the origin with radius [tex]r[/tex], which can be described by the equation
[tex]z=\sqrt{r^2-x^2-y^2}[/tex]
and consider a plane
[tex]z=h[/tex]
with [tex]0<h<r[/tex]. Call the region between the two surfaces [tex]R[/tex]. The volume of [tex]R[/tex] is given by the triple integral
[tex]\displaystyle\iiint_R\mathrm dV=\int_{-\sqrt{r^2-h^2}}^{\sqrt{r^2-h^2}}\int_{-\sqrt{r^2-h^2-x^2}}^{\sqrt{r^2-h^2-x^2}}\int_h^{\sqrt{r^2-x^2-y^2}}\mathrm dz\,\mathrm dy\,\mathrm dx[/tex]
Converting to polar coordinates will help make this computation easier. Set
[tex]\begin{cases}x=\rho\cos\theta\sin\varphi\\y=\rho\sin\theta\sin\varphi\\z=\rho\cos\var\phi\end{cases}\implies\mathrm dx\,\mathrm dy\,\mathrm dz=\rho^2\sin\varphi\,\mathrm d\rho\,\mathrm d\theta\,\mathrm d\varphi[/tex]
Now, the volume can be computed with the integral
[tex]\displaystyle\iiint_R\mathrm dV=\int_0^{2\pi}\int_0^{\arctan\frac{\sqrt{r^2-h^2}}h}\int_{h\sec\varphi}^r\rho^2\sin\varphi\,\mathrm d\rho\,\mathrm d\varphi\,\mathrm d\theta[/tex]
You should get
[tex]\dfrac{2\pi}3\left(r^3\arctan\dfrac{\sqrt{r^2-h^2}}h-\dfrac{h^3}2\left(\dfrac{r\sqrt{r^2-h^2}}{h^2}+\ln\dfrac{r+\sqrt{r^2-h^2}}h\right)\right)[/tex]