To solve this problem,
we must first imagine out that the sequence of the children is either
GBGBGB.... or BGBGBG....
So there are 2
possible sequence all in all. Now to solve for the total arrangements per
sequence, the
girls can be arranged in n! ways in their alloted spots, and so can the boys n!
in their alternate spots, therefore:
Total arrangements = 2 * n! * n!
If n = 55
Total arrangements = 2 * 55! * 55!
Total arrangements = (The answer is very big ~almost infinite)
If n = 5
Total arrangements = 2 * 5! * 5!
Total arrangements = 28,800
So I believe the correct given is 5 boys and 5 girls and there are a total of 28,800 arrangements.