6. A block with a mass m = 2.0 kg slides down a ramp inclined at an angle 0 = 30° as shown below. The block accelerates at a rate of 2.3 m/s?.
a. Find the component of the block's weight along the ramp.
§
b. Find the frictional force between the block and the ramp.
c. Calculate the coefficient of kinetic friction.

6 A block with a mass m 20 kg slides down a ramp inclined at an angle 0 30 as shown below The block accelerates at a rate of 23 ms a Find the component of the b class=

Respuesta :

Answer:

=====

Explanation:

a)  ForceDownPlane = mg sin Φ

                             =  2 kg * 9.81 m/s^2 sin 30 = 9.81 N

b)  F = ma

    F = 2 kg  (2.3 m/s^2) =  4.6 N

    this is the net force accelerating the block

      ForceDownPlane - Ffriction = 4.6 N

                 9.81 - 4.6 = 5.2 N of friction force

c) coeff of kinteic  friction

      normal force = mg cos 30

      normal force * coefficient = 5.2

       coefficient of kinteic friction  = .31  

( NOTE: UNITS of acceleration are    m/ s^2  )

msm555

Answer:

a) 9.8N

b) 5.2 N

c) 0.306

Explanation:

Given:

  • Mass of the block, [tex] m = 2.0 [/tex] kg
  • Inclined angle, [tex] \theta = 30^\circ [/tex]
  • Acceleration of the block, [tex] a = 2.3 [/tex] m/s[tex]^2[/tex]
  • Acceleration due to gravity, [tex] g = 9.8 [/tex] m/s[tex]^2[/tex]

a. Component of the block's weight along the ramp:

The component of the weight along the ramp ([tex] F_{\textsf{parallel}} [/tex]) can be found using the formula:

[tex] F_{\textsf{parallel}} = mg \sin(\theta) [/tex]

[tex] F_{\textsf{parallel}} = 2.0 \times 9.8 \times \sin(30^\circ) [/tex]

[tex] F_{\textsf{parallel}} = 2.0 \times 9.8 \times 0.5 [/tex]

[tex] F_{\textsf{parallel}} = 9.8 \, \textsf{N} [/tex]

So, the component of the block's weight along the ramp is [tex] 9.8 [/tex] N.

b. Frictional force between the block and the ramp:

The net force ([tex] F_{\textsf{net}} [/tex]) acting along the ramp can be related to the acceleration ([tex] a [/tex]) using Newton's second law:

[tex] F_{\textsf{net}} = m \cdot a [/tex]

The net force is the difference between the component of the weight along the ramp and the frictional force ([tex] f [/tex]):

[tex] F_{\textsf{net}} = F_{\textsf{parallel}} - f [/tex]

Substitute in the values:

[tex] 2.0 \cdot 2.3 = 9.8 - f [/tex]

[tex] f = 9.8 - 4.6 [/tex]

[tex] f = 5.2 \, \textsf{N} [/tex]

So, the frictional force between the block and the ramp is [tex] 5.2 [/tex] N.

c. Coefficient of kinetic friction ([tex] \mu_k [/tex]):

The coefficient of kinetic friction can be found using the formula:

[tex] \mu_k = \dfrac{f}{F_{\textsf{normal}}} [/tex]

The normal force ([tex] F_{\textsf{normal}} [/tex]) is equal to the component of the weight perpendicular to the ramp:

[tex] F_{\textsf{normal}} = mg \cos(\theta) [/tex]

[tex] F_{\textsf{normal}} = 2.0 \times 9.8 \times \cos(30^\circ) [/tex]

[tex] F_{\textsf{normal}} = 2.0 \times 9.8 \times \dfrac{\sqrt{3}}{2} [/tex]

[tex] F_{\textsf{normal}} = 2.0 \times 9.8 \times 0.866 [/tex]

[tex] F_{\textsf{normal}} \approx 16.97409791 \, \textsf{N} [/tex]

Now, calculate [tex] \mu_k [/tex]:

[tex] \mu_k = \dfrac{5.2}{16.97409791} [/tex]

[tex] \mu_k \approx 0.3063491224 [/tex]

So, the coefficient of kinetic friction is approximately [tex] 0.306 [/tex].