Respuesta :
By definition we have to:
LOG (k2 / k1)=(-Ea/R)*(1/T1-1/T2)
Where,
k1 = 0.0117 s-1
K2 = 0.689 s-1
T1 = 400.0 k
T2 = 450.0 k
R is the ideal gas constant
R = 8.314 KJ / (Kmol * K)
Substituting
ln (0.0117/0.689)=-Ea/(8.314)*((1/400)-(1/450))
Clearing Ea:
Ea = 122 kJ
answer
the activation energy in kilojoules for this reaction is
Ea = 122 kJ
LOG (k2 / k1)=(-Ea/R)*(1/T1-1/T2)
Where,
k1 = 0.0117 s-1
K2 = 0.689 s-1
T1 = 400.0 k
T2 = 450.0 k
R is the ideal gas constant
R = 8.314 KJ / (Kmol * K)
Substituting
ln (0.0117/0.689)=-Ea/(8.314)*((1/400)-(1/450))
Clearing Ea:
Ea = 122 kJ
answer
the activation energy in kilojoules for this reaction is
Ea = 122 kJ
Answer: The activation energy of the reaction is 122.007 kJ.
Explanation:
Rate constant at [tex]T_1,K_1=0.0117 s^{-1}[/tex]
[tex]T_1=400 K[/tex]
Rate constant at [tex]T_2,K_2=0.689 s^{-1}[/tex]
[tex]T_2=450 K[/tex]
Activation of the energy is given by formula:
[tex]\log\frac{K_2}{K_1}=\frac{E_a}{2.303\times R}\times \frac{T_2-T_1}{T_1T_2}[/tex]
[tex]\log\frac{0.689 s^{-1}}{0.0117 s^{-1}}=\frac{E_a}{2.303\times 8.314 J/K mol}}\times \frac{450 K-400 K}{450 K\times 400 K}[/tex]
On solving for [tex]E_a[/tex]
[tex]E_a=122,007.88 Joules=122.007 kilo-Joules (1000 J = 1kJ)[/tex]
The activation energy of the reaction is 122.007 kJ.