Am I correct in thinking that the answer to this derivative problem is B?

dy/dx = y/x^2

dy/y = dx/x^2

ln y * ln c = -1/x

cy = e^(-1/x)

y = ce^(-1/x)

Am I correct in thinking that the answer to this derivative problem is B dydx yx2 dyy dxx2 ln y ln c 1x cy e1x y ce1x class=

Respuesta :

y ' = x(1+y)
dy/dx = x(1+y)
dy/(1+y) = x dx .... separate variables
int[dy/(1+y)] = int[x dx] ... apply integral to both sides
ln(1+y) = (1/2)x^2+C ... see note below
1+y = e^{(1/2)x^2+C}
1+y = e^C*e^{(1/2)x^2}
1+y = Ce^{(1/2)x^2}
y = Ce^{(1/2)x^2}-1

Answer is actually choice C (not choice B)

note: we would use absolute value bars for the natural log on the left side, but because y > -1, this means 1+y > 0. So there's no need to worry about if 1+y is negative

-----------------------------------------------------

Checking the answer:

y = Ce^{(1/2)x^2}-1
dy/dx = d/dx[ Ce^{(1/2)x^2}-1 ]
dy/dx = d/dx[(1/2)x^2]*Ce^{(1/2)x^2}
dy/dx = (1/2)*2x*Ce^{(1/2)x^2}
dy/dx = x*Ce^{(1/2)x^2} ... we get some messy expression

x*(1+y) = x*(1+Ce^{(1/2)x^2}-1)
x*(1+y) = x*Ce^{(1/2)x^2} .... we get the same messy expression as before

So this shows that dy/dx = x*(1+y) is a true equation for y > -1 and y = Ce^{(1/2)x^2}-1, which confirms the right answer.