Answer:
[tex]\Delta U = 2.2126039 x 10^{12} J[/tex]
Explanation:
While the satellite is in the space vehicle, it has the next potential energy
[tex]U = -\frac{GmMe}{r}[/tex]
where G is the gravitational constant
m is the satellite's mass in kilograms
Me is the earth's mass
r is the orbit's radius from to the earth's center in meters
[tex]U = - \frac{6.67x10^{-11}*2721.554*5.972x10^{24} }{482803}[/tex]
[tex]U = -2.2423x10^{12} J[/tex]
The additional energy required is the difference between this energy and the energy that the satellite would have in an orbit with an altitude of 22000 mi
[tex]U = -\frac{6.67x10^{-11}*2721.554*5.792x10^{24} }{35405568}[/tex]
[tex]U = -29696124610.3 J[/tex]
Then
[tex]\Delta U = 2.2126039 x 10^{12} J[/tex]